Learning Bayesian network parameters under equivalence constraints

نویسندگان

  • Tiansheng Yao
  • Arthur Choi
  • Adnan Darwiche
چکیده

We propose a principled approach for learning parameters in Bayesian networks from incomplete datasets, where the examples of a dataset are subject to equivalence constraints. These equivalence constraints arise from datasets where examples are tied together, in that we may not know the value of a particular variable, but whatever that value is, we know it must be the same across different examples. We formalize the problem by defining the notion of a constrained dataset and a corresponding constrained likelihood that we seek to optimize. We further propose a new learning algorithm that can effectively learn more accurate Bayesian networks using equivalence constraints, which we demonstrate empirically. Moreover, we highlight how our general approach can be brought to bear on more specialized learning tasks, such as those in semi-supervised clustering and topic modeling, where more domain-specific approaches were previously developed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning Bayesian Networks under Equivalence Constraints (Abstract)

Machine learning tasks typically assume that the examples of a given dataset are independent and identically distributed (i.i.d.). Yet, there are many domains and applications where this assumption does not strictly hold. Further, there may be additional information available that ties together the examples of a dataset, which we could exploit to learn more accurate models. For example, there a...

متن کامل

Bayesian Network Learning with Parameter Constraints

The task of learning models for many real-world problems requires incorporating domain knowledge into learning algorithms, to enable accurate learning from a realistic volume of training data. This paper considers a variety of types of domain knowledge for constraining parameter estimates when learning Bayesian Networks. In particular, we consider domain knowledge that constrains the values or ...

متن کامل

An Introduction to Inference and Learning in Bayesian Networks

Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

A Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf

Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation  method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Artif. Intell.

دوره 244  شماره 

صفحات  -

تاریخ انتشار 2017